skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parekh, Kavita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Biocompatible and nanoscale devices for biological modulation of cells and tissues possess the potential for tremendous impact on medical and industrial technologies. Typical medical devices and therapies tend to be macroscale, comprised of nonbiocompatible materials, and broadly targeted, resulting in imprecise treatments and adverse effects such as chronic immune response and tissue damage. The development of nanoenabled and biocompatible technologies—ranging from biodegradable nanoparticles for localized drug delivery to transient electronic devices for stimulation therapy to engineered biofilms with applications to nanomedicine—will continue to enable the advent of personalized medicine and precision therapies. In this review, recent research into this frontier is reviewed, first analyzing the synthesis of nanoenabled and biocompatible technologies and then presenting significant considerations regarding the development of such materials. Lastly, the latest advancements in biocompatible, nanoenabled devices are examined, followed by a discussion of the direction of future research in the field. 
    more » « less